Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Simulation of a Magnetic Induction Method for Determining Passive Electrical Property Changes of Human Trunk Due to Vital Activities

H. Mahdavi[1], J. Rosell Ferrer[1]
[1]Universitat Politècnica de Catalunya, Barcelona, Spain

The human body consists of many different types of tissues each with specific passive electrical properties. Vital activities lead to a characteristic change of these properties and geometrical changes. Magnetic induction is a non-contact method which can be used to determine these changes. The method is based on the creation of a primary magnetic field that will produce eddy currents in the ...

Modeling a Novel Shallow Ground Heat Exchanger

M. Bottarelli[1], M. Bortoloni[1]
[1]Università degli Studi di Ferrara, Dipartimento di Architettura, Ferrara, Italia

Ground Heat Exchangers (GHXs) are rarely installed horizontally in linked ground source heat pumps used for space conditioning, because their energetic performance is lower than in the vertical solution. However, the horizontal one holds several advantages: it is easy to carry out and upkeep, it is more compliant with environmental regulations, and interferes marginally with groundwater systems. ...

Multiphysics Software Applications in Reverse Engineering

W. Wang[1], K. Genc[2]
[1]University of Massachusetts, Lowell, MA, USA
[2]Simpleware, Exeter, United Kingdom

During the past decade reverse engineering has become a common and acceptable practice utilized by many aftermarket suppliers, and even original equipment manufacturers (OEM). This presentation focuses on the applications of multiphysics software such as COMSOL and Simpleware® in reinventing the design details and manufacturing processes of an existing part in the absence of the original design ...

Modeling of Lead-acid Flow Battery

M. N. Nandanwar[1], S. K. Gupta[1]
[1]Indian Institute of Science, Bangalore, India

Failure of conventional lead-acid battery is attributed to degradation of solid active mass (PbO2 and PbSO4 ). A number of research efforts are underway worldwide to overcome degradation of active mass to improve the cycle life of lead-acid batteries. Soluble lead-acid flow battery (SLFB) is a new kind of lead-acid flow battery in which products of discharge remain in dissolved state. SLFB ...

Modelling of a Wool Hydrolysis Reactor - new

M. Giansetti[1], A. Pezzin[1], S. Sicardi[1], G. Rovero[1]
[1]Politecnico di Torino, Torino, Italy

The Life+ GreenWoolF project is aimed at demonstrating that green hydrolysis with superheated water is an effective way to convert wool wastes into organic nitrogen fertilizers. The core of the process is represented by the reaction tank (Figure 1) in which the hydrolyses reaction takes place. The temperature of the material during the reaction is one of the most influencing parameter and has to ...

Modelling of the Dynamical Fluorescent Micro-Thermal Imaging Experiment on the Heat Diffusion in the La5Ca9Cu24O41 Spin Ladder Compound - new

E. Khadikova[1], F. de Haan[1], P. H. M. van Loosdrecht[2]
[1]Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
[2]Department of Physics, University of Cologne, Köln, Germany

The dynamical fluorescent micro-thermal imaging (FMI) experiment has been used to investigate the phonon-magnon interaction in the 1D Heisenberg antiferromagnet La5Ca9Cu24O41. This material shows highly anisotropic heat conductivity due to the efficient magnetic heat transport along the spin ladders in the compound carried by magnetic excitations (magnons). To extract information on the phonon ...

The Simulation of Motion of a Slider upon a Stator Due to Frictional Force Using COMSOL Multiphysics® Software - new

H. B. Nemade[1]
[1]Indian Institute of Technology Guwahati, Guwahati, Assam, India

The Surface Acoustic Wave (SAW) linear motor was studied which is developed utilizing the friction principle for driving. The principle says that, when a slider is placed on the Rayleigh waves generated on a stator, the slider moves in reverse direction of the wave due to friction between the stator and the slider. A LiNbO3 piezoelectric substrate is used as a stator where comb structured Al ...

Designing Polymer Thick Film Intracranial Electrodes for use in Intra-Operative MRI Setting.

G. Bonmassar[1], and A. Golby[2]
[1]AA. Martinos Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
[2]Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts, USA

A new type of MRI compatible intracranial electrode based on Polymer Thick Film (PTF) is presented and studied using COMSOL Multiphysics. The geometry considered was a two-dimensional cross section cut of 5 mm thick electrodes with 5 cm leads on top of a 2×10 cm slab representing Gelfilm, or the substrate. The resistive leads were compared with metallic leads to estimate the ...

Simulation of Convection in Water Phantom Induced by Periodic Radiation Heating

H.H. Chen-Mayer[1], and R. Tosh[1]
[1]Ionizing Radiation Division, National Institute of Standards and Technology, Gaithersburg, Maryland, USA

Water calorimetry is employed to establish a primary reference standard for radiation dosimetry by measuring the temperature rises in a water phantom (a cube of about 30 cm x 30 cm x 30 cm) subjected to a beam of ionizing radiation.  We use COMSOL Multiphysics to model the system using the Heat Transfer module and the Incompressible Navier-Stokes module with a geometry of 2D-axial ...

Screening Effects in Probing the Electric Double Layer by Scanning Electrochemical Potential Microscopy

R.F. Hamou[1], P.U. Biedermann[1], A. Erbe[1], and M. Rohwerder[1]
[1]Max-Planck-Institut für Eisenforschung GmbH, Düsseldorf, Germany

A computational method is developed to study probing the electric double layer by Scanning Electrochemical Potential Microscopy. The model is based on a modified Poisson- Boltzmann equation, which takes into account steric effects. We investigated the effect of metallic apex protrusion and the Open Circuit Potential (OCP) of the tip on the probed potential. A clear electrostatic screening effect ...

2691 - 2700 of 3695 First | < Previous | Next > | Last