Quick Search

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Design of Novel Recirculation System for Slow Reacting Assays in Microfluidic Domain

N.N. Sharma, and A. Tekawade
Mechanical Engineering Group, Birla Institute of Technology & Science, Pilani, Rajasthan, India

A simple design for a microfluidic flow system for use in mixing or reacting assays with limited sample availability has been proposed and analyzed using COMSOL\'s multiphysics simulation package. The design is based on differential electroosmotic flow concept which has facilitated a number of interesting flow phenomena in micro-domains. For an average potential drop of about 86 kV/m in the ...

Numerical Simulation of a Joule Heating Problem

S.M.F. Garcia[1], and P. Seshaiyer[2]
[1]U.S. Naval Academy, Annapolis, MD, USA
[2]George Mason University, Fairfax, VA, USA

In this work we consider a 1-D mathematical model that describes a heating problem combined with electrical current flows in a body which may undergo a phase change as a result of the heat generated by the current, so-called Joule heating. The model consists of a system of nonlinear partial differential equations with quadratic growth in the gradient. Joule heating is generated by the resistance ...

Simplifying A Model Of Short Subsequent Sections Containing A Common Detailed Cross-Section

J. Krah
AkerSolutions, Fornebu, Norway

In COMSOL Multiphysics it is possible to implement and simulate several independent models in parallel. This can be meaningful when the different models are coupled to each other by some kind of interaction. If a part of the geometries is identical in all models, this part can be reduced in that it is implemented in only one of the geometries. In the other geometries only its solution towards its ...

Stress Analysis of an Electromagnetic Horn

B. Lepers
Université de Strasbourg
Strasbourg, France

An electromagnetic horn is a device used in particle physics to produce a strong pulsed toroidal magnetic field and to focus charged particles toward a detector. A multiphysics analysis is performed to assess the stress level inside the horn structure. In steady state regime, the horn is submitted to a thermal static stress due to thermal dilatation. Then, every 80 ms a strong magnetic field ...

Is Experimentation More Intuitive?

R. Venkataraghavan
Unilever R&D
Bangalore, India

Venkataraghavan is the Discover Category Leader, Water, working at the interface of Science, Technology and Business, for developing solutions and products for water purification at Unilever R&D, Bangalore. He joined Unilever in 2002 and earlier worked in interfacial science, materials science and electrodynamics for the Laundry Category. Venkataraghavan also had a stint with Unilever Technology ...

Multiphysics Simulation of an Anode-supported Micro-tubular Solid Oxide Fuel Cell (SOFC)

G. Ganzer, W. Beckert, T. Pfeifer, and A. Michaelis
Fraunhofer IKTS
Dresden, Germany

The high thermal stability and fast start-up behavior make micro-tubular solid oxide fuel cells (SOFCs) a promising alternative for small-scale, mobile power devices in the range of some Watts. To understand the transport phenomena inside a single micro-tubular SOFC, a 2-D, axi-symmetric, non-isothermal model, performed in COMSOL Multiphysics® 4.2, has been developed. Due to long current path ...

Design Optimization of an Electronic Component with an Evolutionary Algorithm Using a MATLAB-COMSOL Based Model

E. Pelster, and D. Wenger
Wenger Engineering GmbH
Ulm, Deutschland

Electric construction components exposed to alternating high voltage have to withstand a significant amount of thermal loads and, resulting from the changes in Temperature , structural stresses. In order to achieve minimization of these loads, optimizing the geometry can be a helpful tool in the design process. In this study COMSOL is used to predict thermal and mechanical loads on a high ...

Testing and Analyzing Complex Loading Conditions and Designs to Improve Subsea Cable Life

Tim Poole graduated from Cambridge University with a Masters degree in Engineering in 2008 and immediately joined JDR Cables Systems, a leading supplier of custom subsea oil and gas umbilical systems and renewable energy cables. He started in the Research and Development team, working on creating new products lines and testing umbilicals, which included fatigue, tensile and bend stiffness ...

Modeling Large-Scale Mine Dewatering by Using Subsurface Flow Module in COMSOL Multiphysics

J. Molinero[1], A. Nardi[1], P. Trinchero[1]
[1]Amphos 21, Barcelona, Spain

Groundwater is a key factor affecting mine operations worldwide. On one hand, both underground and open pit mines need to pump out groundwater in order to proceed with mineral extraction and increase the stability of rock slopes. On the other hand, groundwater abstractions can produce undesired environmental and social impacts, which should be anticipated in the environmental impact assessments ...

Reliability Enhancement of Bio MEMS based Cantilever Array Sensors for Antigen Detection System using Heterogeneous Modular Redundancy

L. S. Sundharam[1]
[1]Kumaraguru college of Technology, Coimbatore, Tamil nadu, India

The objective of the work is to propose a reliability enhancement model for antigen detection system (ADS) using bio MEMS based cantilever array sensors using heterogeneous modular redundancy technique. The reliability of the ADS is expressed in terms of the constituent sub systems which are heterogeneous not only in their respective structures and behaviors but also in their forms. The possible ...

2691 - 2700 of 2861 First | < Previous | Next > | Last