Veröffentlichungen und Präsentationen

Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

COMSOL Multiphysics for Efficient Solution of a Transient Reaction-Diffusion System with Fast Reaction

M.K. Gobbert[1], A. Churchill[1], G. Wang[1], and T.I. Seidman[1]
[1]Department of Mathematics and Statistics, University of Maryland, Baltimore County, Baltimore, Maryland, USA

A reaction between chemical species is modeled by a particular reaction pathway, in which one reaction is very fast relative to the other one. The diffusion controlled reactions of these species together with a reaction intermediate are described by a system of three transient reaction diffusion equations over a two-dimensional spatial domain. In the asymptotic limit of the reaction parameter ...

MultiPhysics Analysis of Trapped Field in Multi-Layer YBCO Plates

P. Masson[1], and R. Meinke[1]
[1]Advanced Magnet Lab, Palm Bay, Florida, USA

Superconductors have the unique capability of trapping magnetic flux. This feature has the potential to enable and improve several applications including high power density rotating machines. Current material used as trapped flux magnets (TFM) is single domain YBCO that present numerous limitations interms of performance, stability and size. One way to overcome the limitations is to use thin ...

Benchmark Comparison of Natural Convection in a Tall Cavity

H. Dillon[1]
[1]Department of Mechanical Engineering, University of Washington, Seattle, Washington, USA

A comparison of the commercial code COMSOL is performed with the bench-mark solutions provided by the literature for a tall, differentially heated rectangular cavity for aspect ratios of 8, 15, 20, and 33. At small Rayleigh numbers the flow is dominated by conduction. As the Rayleigh number is increased the flow becomes unstable, first resulting in multicellular secondary flow patterns, and then ...

Thermal Analysis of High Power LEDs

C-C. Hsu
Kao Yuan University, Taiwan

Assistant Professor Chin-Chuan Hsu received his Master degree (1991) in Materials Science and Engineering from National Cheng Kung University, Tainan, Taiwan. In 1995 he received the Ph.D. degree in Materials Science and Engineering from National Taiwan University, Taipei, Taiwan. From 1995 to 2002, he was a Production Department Director at Tung Mung Development Co., Ltd., Tainan, Taiwan. In ...

Design of High Performance Condenser Microphone Using Porous Silicon

S. Suganthi[1], M. Anandraj[2], and L. Sujatha[1]
[1]Department of Electronics & Communication Engineering, Rajalakshmi Engineering College, Chennai, India
[2]Department of Physics, Rajalakshmi Engineering College, Chennai, India

Porous Silicon (PS) can easily be formed by electrochemical etching of silicon in HF based electrolytes at room temperature. Since, PS is compatible with silicon IC technology; it finds lot of applications in the fabrication of MEMS devices. In the current study, we discuss the design of a condenser microphone using a Silicon/ Porous Silicon composite membrane as a movable plate. The performance ...

Exploiting New Features of COMSOL Version 4 on Conjugate Heat Transfer Problems

J.D. Freels[1], I.T. Bodey[2], and R.V. Arimilli[2]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA
[2]University of Tennessee, Knoxville, TN, USA

Recent new releases of COMSOL provide the user with a dramatic new interface from which to interact, and many new features “under the hood” for solving problems more efficiently and with even greater accuracy and consistency than before. This paper will explore several of these new version 4+ features for the conjugate heat transfer class of problems. Our environment is unique in that we ...

Numerical Investigation of a Time-dependent Magnetic Actuation Technique for Tagging Biomolecules with Magnetic Nanoparticles in a Microfluidic System

A. Munir, J. Wang, Z. Zhu, and H.S. Zhou
Worcester Polytechnic Institute, Worcester, MA, USA

The magnetic body forces that act on mono-dispersed magnetic nanoparticles (MNPs) tagged biomolecules in a microfluidic system can be efficiently used in various applications that involve separation and detection including DNA and protein analysis, bio-defense, drug delivery, and pharmaceutical development. In this work, we report an FEM model to demonstrate a novel method of tagging biomolecules ...

Control Synthesis for Distributed Parameter Systems Modeled by FEM in COMSOL Multiphysics

C. Belavý, G. Hulkó, P. Buček, and S. Lel'o
Slovak University of Technology in Bratislava, Bratislava, Slovakia

Technological processes in the engineering practice from point of view of systems and control theory are frequently in the form of distributed parameter systems (DPS). Techniques of FEM based modeling and design of control synthesis methods of DPS which is acceptable for various technological processes, will be demonstrated on modeling and control of temperature fields of the glass melting ...

Finite Element Modeling of a Cell Lysing Chip

S. Maloney[1,2], Y. Li[1,2], G. Auner[1], and J. Smolinski[1]
[1]Wayne State University, Detroit, MI, USA
[2]Lawrence Technological University, Southfield, MI, USA

We are working on a microfabricated lysing chip that uses a piezoelectric actuator to provide ultrasonic energy to break apart cells. The device contains pillars with varying dimensions. We hypothesize that increasing the aspect ratio of pillars will increase the efficiency of the transfer of ultrasonic energy into the fluid phase and enhance the lysing efficiency. The fluid structure ...

Microwave Heating at the Grain Level

S. Lefeuvre[1], and O. Gomonova[2]
[1]Eurl Creawave, Toulouse, France
[2]Siberian State Aerospace University, Krasnoyarsk, Russia

The microwave heating and processing of heterogeneous material is usually simulated using a set of coupled PDE equations in an homogeneous medium. Nowadays it is possible to describe more accurately the process with a suitable description of the heterogeneities that is at the grain level. Many authors work with spheres (circles) to represent the grains but it is difficult to achieve an ...

Quick Search

2691 - 2700 of 3644 First | < Previous | Next > | Last