Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

The Use of COMSOL in Teaching Heat and Moisture Transport Modeling in Building Constructions

A.W.M. van Schijndel[1] and H.L. Schellen[1]
[1]Eindhoven University of Technology, Eindhoven, The Netherlands

This paper presents the use of the multiphysics package COMSOL for teaching heat and moisture transport modeling in the research area of building physics. It includes a description on how COMSOL works and six exercises with 2D, 3D, steady state and transient models. It is concluded that COMSOL is a very useful tool for this kind of engineering education. Especially, the abstraction level of ...

Oxidation of Metallic Nanoparticles

A. Auge[1], A. Weddemann[1], F. Wittbracht[1], B. Vogel[1], and A. Hütten[1]

[1]Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, Bielefeld, Germany

The oxidation behavior of metallic nanoparticles is investigated in respect to material parameters like Mott potential, defects on the microstructure and oxide volume increase per ionic defect. An emphasis is laid on magnetic nanoparticles where the degree of oxidation can be measured via the reduction of the magnetic moment.

Thermo-fluid Dynamics Modelling of Hydrogen Absorption and Desorption in a LaNi4.8Al0.2 Hydride Bed

D. Baldissin[1] and D. Lombardo[1]
[1]Compumat S.r.l., Torino, Italy

A two-dimensional mathematical model for the absorption and desorption of H2 in LaNi4.8Al0.2 was developed and experimentally validated. The model is composed of an energy balance, a mass balance and a momentum balance. These differential equations are numerically solved by means of the finite element method using the software COMSOL Multiphysics®. From a comparison between theoretical ...

Numerical Study of Coated Electrical Contacts

P. Lindholm
Machine Design, KTH, Stockholm, Sweden

Electrical contacts consists of parts where the surfaces are in contact and where the actual physical contact occur just in a few contact asperity points scattered over the whole apparent contact area. Through these contact spots between the two mating bodies the mechanical load and the electric current is transmitted. Often a soft coating is used to enlarge the real contact area. Modeling the ...

Convergence Rates For Models With Coupled 1D / 2D Subdomains

A. Bradji[1], E. Holzbecher[2], and M.S. Litz[2]
[1]Department of Mathematics, University of Annaba, Algeria
[2]Georg-August Universität Göttingen, Germany

It is well known that the convergence rate of a numerical model is significantly reduced, when the genuine character of the setting with differential equation and boundary condition is not given anymore. Here we examine the decrease of convergence order for models using COMSOL in which the problem set-up includes a coupling between a 1D and a 2D subdomain. In terms of physics we are dealing with ...

Thermal Properties of Copper Tungsten with Copper Via Composite

J. Ma[1], A. Parker[1], and K. Kuan[2]
[1]Southeastern Louisiana University, Hammond, LA, USA
[2]Torrey Hill Technology LLC, SanDiego, CA, USA

This study focuses on a low-cost composite material based on CuW with Cu via, which functions as a more efficient thermal path for heat conduction. A 50mm X 50mm X 1mm CuW(15/85) speciman consists an array of 30X30 uniformly distributed cylindrical Cu via attaching to a microprocessor generating 100 watts power was studied. By calculating the heat flux coming out of the top and the ...

A Simplified Approach to the Contact in Thermo-mechanical Analysis of Refractory Linings

Y. Kaymak
VDEh Betriebsforschungsinstitut GmbH
Düsseldorf, Germany

The geometrical design and material choice for a refractory lining requires a good understanding of its thermo-mechanical behavior. Design engineers clearly need a tool for fast and efficient computation of thermo-mechanical state of refractory linings under various conditions. However, standard simulation models and their solutions suffer as the linings are composed of many refractory blocks in ...

Transient Analysis of the Triggering Behaviour of Safety Fuses

F. Loos, and H.-D. Ließ
Universität der Bundeswehr München
München, Germany

The purpose of this work is to investigate the triggering behaviour of safety fuses for mobile on board supply systems. The influence of different materials and shapes of the fuses on the triggering behaviour are analyzed. Furthermore, the simulation results obtained by the use of COMSOL Multiphysics® are compared to experimentally achieved data. For the transient simulation of the heat ...

Three Dimensional Numerical Study of the Interaction of Turbulent Liquid Metal Flow with an External Magnetic Field

G. Pulugundla[1], M. Zec[2], and A. Alferenok[3]
[1]Institute of Thermodynamics and Fluid Mechanics, Ilmenau University of Technology, Ilmenau, Germany
[2]Department of Advanced Electromagnetics, Ilmenau University of Technology, Ilmenau, Germany
[3]Electrothermal Energy Conversion Group, Ilmenau University of Technology, Ilmenau, Germany

Lorentz Force Velocimetry (LFV) is a non-contact measurement technique used to determine flow rates in electrically conducting fluids by exposing the flow to an external magnetic field and measuring the Lorentz force acting on the magnet system. Typically, for LFV applications real and complex permanent magnet systems with inhomogeneous magnetic fields interact with the fluid. In this paper, ...

Homogeneous Heating of Milk

A. Stahel, and A. Reichmuth
Berner Fachhochschule
Biel, Switzerland

When milk is taken out of a refrigerator it has to be heated up to 37°C. The standard solution is to put the bottle in a bath of warm water and wait. The goal is quickly to achive a uniform temperature of 37°C, without ever exceeding 40°C. Using COMSOL Multiphysics and a measurement setup for calibration, we show that this can be improfed by using variable heating. By choosing heating ...