Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

In Silico Evaluation of Local Hemodynamics Following Vena Cava Filter Deployment

J. Ferdous[1], M. Ghaly [2], V. B. Kolachalama [3], T. Shazly[1,4]
[1]Biomedical Engineering Program, University of South Carolina, Columbia, SC, USA
[2]Department of Biomedical Engineering, North Carolina State University, Raleigh, NC, USA
[3]Charles Stark Draper Laboratory, Cambridge, MA, USA
[4]Department of Mechanical Engineering, University of South Carolina, Columbia, SC, USA

Inferior vena cava (IVC) filters have become essential components in deep vein thrombosis treatment to prevent preventing pulmonary embolisms. Filter efficacy relies on maintaining IVC patency by preventing filter-induced thrombosis following clot capture. A computational model has been developed to determine whether a candidate filter design elicits hemodynamic patterns that promote thrombus ...

Modeling Ferrofluid Flow in an Annular Gap Moving with Reciprocating Shaft

Y. He[1], R. Nilssen[1]
[1]Department of Electric Power Engineering, Norwegian University of Science and Technology, Trondheim, Norway

Ferrofluids have been successfully used in the seals for rotary shafts, but few studies focus on the reciprocating motion seals. Since the completely different operational regimes, previous experiences on the rotary motions could not be directly applied on the cases for reciprocating shafts. In this study, we present a simplified model to describe the process that a shaft linearly moving in a ...

Mode Conversion Losses in a Smooth Wall Circular Waveguide

R. Kumar[1], H. B. Pandya [1], S. Danani [1], P. Vasu [1], V. Kumar[1]
[1]ITER-India, Gandhinagar, Gujarat, India

The ITER-ECE transmission lines consist of smooth-wall circular waveguides, including miter bends and other components. The performance of the TL is crucial to ensuring that the requirements for the diagnostic to measure the plasma parameters are met. COMSOL Multiphysics® has a finite element method with a built-in Eigenmode matrix solver. The accuracy of COMSOL solutions depends on the size of ...

Modeling of an Oxygenation-Aided 3D Culture for Functional Beta-Cell Expansion

S. Jin[1], J. McReynolds[1], X. Li[2], J. Guan[2]
[1]Department of Biomedical Engineering, College of Engineering, University of Arkansas, Fayetteville, AR, USA
[2]Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, USA

Currently, researchers are looking for ways to mass-produce biologically functional pancreatic beta cells in vitro because of the shortage of donor tissue needed for diabetes cell therapy. The beta cells will become hypoxic if their high oxygen demands are not met. We hypothesized that the biological function of beta cells can be improved if they are cultured in a 3D collagen scaffold, which ...

Advancements in Carbon Dioxide and Water Vapor Separations Using COMSOL Multiphysics®

J. Knox[1], R. Coker[1], R. Cummings[1], C. Gomez[1], G. Schunk[1]
[1]NASA, Marshall Space Flight Center, Huntsville, AL, USA

Some NASA efforts are focused on improving current systems that utilize fixed beds of sorbent pellets by evaluating structured sorbents, seeking more robust pelletized sorbents, and examining alternate bed configurations to improve system efficiency and reliability. For the bulk separation of CO2 and H2O, temperature changes due to the heat of adsorption are significant, requiring modeling and ...

Studying the Sensitivity of the Wrinkling Process to Mesh Imperfections Using COMSOL Multiphysics® and LiveLink™ for MATLAB®

S. K. Saha[1], M. L. Culpepper[1]
[1]Massachusetts Institute of Technology, Cambridge, MA, USA

Wrinkles are formed on a thin film as a result of buckling-based instabilities. This can be used as an inexpensive fabrication technique for generating micro and nano scale periodic patterns. Finite element techniques are used for the predictive design of complex wrinkling patterns. As wrinkles are formed via a bifurcation process, the accuracy of these models is dependent on the initial ...

Modeling Maillard Reaction and Thermal Transformations During Bread Baking

D. Papasidero[1], F. Manenti[1]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Milano, Italy

One big challenge for the food industry is to predict and optimize flavors. The Maillard reaction occurs in food matrices containing carbohydrates and proteins under specific operating conditions. The presented research couples thermal and kinetic modeling to the bread baking process, an ideal field to study this complex set of reactions responsible for many bread flavors. The thermal model ...

Paleohydrogeological Reactive Transport Model of the Olkiluoto Site (Finland) - new

M. Luna[1], P. Trinchero[1], J. Molinero[1], J. Löfman[2], P. Pitkanen[3], L. Koskinen[3]
[1]Amphos 21 Consulting, Barcelona, Spain
[2]VTT Energy, Espoo, Finland
[3]Posiva, Eurajoki, Finland

The safety assessment of the deep geological repository for nuclear waste of Olkiluoto (Finland) requires the evaluation of the influence of the land uplift (ice withdrawal) in groundwater. With this objective in mind, we have developed a three dimensional reactive transport model of the Olkiluoto, simulating the most relevant deformation zones in a three-dimensional domain. The evolution in ...

iCP 1.0: Stable Release Version of the Interface COMSOL-PHREEQC - new

A. Nardi[1], L. M. deVries[1], A. Sainz[1], J. Molinero[1]
[1]Amphos 21 Consulting, Barcelona, Spain

iCP (Nardi et al, 2014) is a software that couples two standalone simulation programs: COMSOL Multiphysics® and PHREEQC (Parkhurst & Appelo, 2013). The tool is ideal for applying multiphysics and geochemistry in Earth Sciences. Flexibility of the two coupled codes result in an extensive list of modelling areas, offering good opportunities for R+D. The iCP 1.0 is the version of the ...

Microwave Heating Simulation of Frozen Pie - new

F. Chen[1], T. Gulati[1], H. Zhu[1], A. K. Datta[1]
[1]Cornell University, Ithaca, NY, USA

This research studies the thermal effect of frozen pie heating in the microwave oven. Considering as composite material, the properties of pie derived based on its composition. Here the package, susceptor’s influence to the temperature distribution is also studied.