Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Optimization of 3D Layered Metal-Dielectric Stacks (MDS) for Near-Field Fluorescence Imaging

P.S. Tan[1], K. Elsayad[2], K. Heinze[1]
[1]Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
[2]Research Institute of Molecular Pathology (IMP), Vienna, Austria

Nano-structures consisting of layered metal-dielectric stacks (MDSs) can be designed to have evanescent transmission and reflection coefficients that oscillate as a function of transverse wavevector and frequency. However, these structures always suffer from the material losses and surface roughness that are detrimental to image reconstruction. As such, we propose an optimized planar anisotropic ...

Towards Optimized Neural Stimulation in a Device for Urinary Incontinence

A.N. Shiraz[1], A. Demosthenous[1]
[1]E&EE Department, University College London, London, United Kingdom

After spinal cord injury (SCI) the functions of the lower urinary tract are often disrupted and may have fatal consequences for the patient. It has been shown that using a transrectal probe developed by Craggs et al., through conditional transrectal stimulation of pudendal nerve, it is possible to treat hyperreflexia in some of the SCI patients. To maximise the efficacy of this type of ...

Optimization of a Rotor Shape for Spherical Actuator with Magnetically Levitating Rotor to Match Octupole Field Distribution

M. Sidz[1], R. Wawrzaszek[1], L. Rossini[2], A. Boletis[3], S. Mingard[3], K. Seweryn[1], E. Onillon[2], M. Strumik[1]
[1]Space Research Centre of PAS, Warsaw, Poland
[2]CSEM Centre Suisse d’Electronique et de Microtechnique SA, Neuchâtel, Switzerland
[3]Maxon Motor AG, Sachseln, Switzerland

The use of a reaction sphere as an actuator used by satellite Attitude Control System was proposed over twenty years ago. In principle this concept assumes the use of a single reaction sphere which can be accelerated in any direction instead of a set of reaction wheels. The solution discussed in this work has been proposed and patented by CSEM company. Contrary to conventional ball bearing ...

Modeling an Adsorption Process in a Shell-and-Tube-Heat-Exchanger-Type Adsorber - new

G. Salazar Duarte[1], B. Schürer[1], C. Voss[1], D. Bathen[2]
[1]Linde AG, Munich, Germany
[2]Universität Duisburg-Essen, Duisburg, Germany

Pressure Swing Adsorption (PSA) and Temperature Swing Adsorption (TSA) are commonly used for separation/purification of gas mixtures in industrial processes. The cycle time of industrial TSA processes usually ranges from several hours to days. The reason for this long cycle time is the usage of purge gas for heating and cooling the system (direct heating), which limits the application of TSA ...

3D Multiphysics Analyses to Support Low Enriched Uranium (LEU) Conversion of HFIR - new

P. K. Jain[1], J. D. Freels[1]
[1]Oak Ridge National Laboratory, Oak Ridge, TN, USA

Engineering design studies of the feasibility of conversion of the High Flux Isotope Reactor (HFIR) from high-enriched uranium to low-enriched uranium (LEU) fuel are ongoing at Oak Ridge National Laboratory as part of an effort sponsored by the U.S. Department of Energy’s Global Threat Reduction Initiative Reduced Enrichment for Research and Test Reactors program. COMSOL Multiphysics® models are ...

Investigation on MEMS Based Thermal Sensor for Cancer Detection

A. V. Lakshmi[1], K. C. Devi[1]
[1]PSG College of Technology, Coimbatore, Tamil Nadu, India

This paper presents the design and simulation of a thermal sensor using COMSOL Multiphysics® software for the detection of low body temperature syndrome which can allow the early detection of cancer. This sensor is made of an alloy consisting of two materials with different coefficients of thermal expansion. The main objective of this work is to investigate the structural change in the sensor ...

Microvascular Dysfunction in PAD Patients - new

K. Cluff[1], H. Mehraein[1], B. Jayakumar[2]
[1]Department of Bioengineering, Wichita State University, Wichita, KS, USA
[2]Department of Industrial & Manufacturing Engineering, Wichita State University, Wichita, KS, USA

Background: Peripheral arterial disease (PAD) is characterized by atherosclerotic blockages of the arteries supplying the lower extremities, which cause a progressive accumulation of ischemic injury to the skeletal muscles of the lower limbs. Despite revascularization treatment intervention some PAD patients require follow up secondary treatment due to a continued decline in limb function, ...

COMSOL Modelling for Li-ion Battery Diagnostics

P. Singh [1], N. Khare [2], P. K. Chaturvedi [3],
[1] Banasthali University, Rajasthan, India
[2] EOS Energy Storage, Edison, NJ, USA
[3] SRM University, Ghaziabad, Uttar Pradesh, India

Li-ion battery is being used as power source for various applications. Smart battery diagnostics is essential for creating a better control over the energy storage system and cycle life of a Li-ion battery. It is especially required for real time applications, where more power and energy demand together with an extended lifetime is critical. In this paper, under battery diagnostics, the ...

Simulation of an AlN Thin Film Resonator for High Sensitivity Mass Sensors

M. Maitra [1], H. B. Nemade [1], S. Kundu [1],
[1] Indian Institute of Technology Guwahati, Guwahati, Assam, India

The objective of this paper is to show the simulation of a piezoelectric thin film device and its application as a sensor. Piezoelectric aluminum nitride thin film clamped at two ends is simulated using COMSOL Multiphysics software. The device consists of the piezoelectric thin film suspended on a cavity etched on a silicon substrate. Two metal electrodes are placed at the two fixed sides of the ...

The Spherical Design Algorithm in the Numerical Simulation of Fiber-Reinforced Biological Tissues

M. Carfagna [1], A. Grillo [1],
[1] Dipartimento di Scienze Matematiche, Politecnico di Torino, Italy

The numerical results of the unconfined compression test on a sample of Articular Cartilage (AC) are discussed. AC is modelled as a load-bearing, deformable, fiber-reinforced material filled with an interstitial fluid and comprising statistically oriented collagen fibers, chondrocytes, and a matrix of proteoglycans. A strain energy is assigned to characterize the mechanical behavior of the ...