Hier finden Sie Veröffentlichungen und Präsentationen der weltweit stattfindenden COMSOL-Konferenzen. In diesen präsentieren Ihre Fachkollegen ihre neuesten mit COMSOL Multiphysics entwickelten Produkte und Ideen. Die Forschungsthemen umfassen ein weites Feld von Industrien und Anwendungsbereichen, die von Mechanik und Elektronik über Strömungen bis zur Chemie reichen. Nutzen Sie die Quick Search, um die zu Ihrem Forschungsbereich passenden Präsentationen zu finden.

Multiphysics Simulations in Complex 3D Geometry of the High Flux Isotope Reactor Fuel Elements using COMSOL

J. Freels, and P. Jain
Oak Ridge National Laboratory
Oak Ridge, TN

A current research and development project is ongoing to convert the operating High Flux Isotope Reactor (HFIR) of Oak Ridge National Laboratory (ORNL) from highly-enriched uranium (HEU U3-O8) fuel to low-enriched uranium (LEU U-Mo) fuel. Because LEU HFIR-specific testing and experiments will be limited, we are relying on COMSOL to provide the needed multiphysics simulation capability to ...

Behavioural Change on EM Exposure and its Modelling

K. Singh, N. Kothari, and S. Choudhary
Electronics and Communication Engineering Department
Geetanjali Institute of Technical Studies
Dabok, Udaipur
Rajasthan, India

This paper presents the ill-effects of EM exposure through experiment, simulation and modelling using COMSOL Multiphysics. Biological Effects of microwave radiations on living creatures are studied supported with the practical results.

Thickness Designs for Micro-Thermoelectric Generators Using Three Dimensional PDE Coefficient-COMSOL Multiphysics 4.2a Analysis

S. Seif[1], K. Cadien[1]
[1]Department of Chemical & Materials Engineering, University of Alberta, Edmonton, AB, Canada

Predicting the optimum thickness and gap size between n-type and p-type legs of micro thermoelectric devices are the major challenges in designing micro thermo electric generators. We have reported the gap size and optimal thickness for optimal output power. We found that the gap size should be 0.1 microns; but, depending on fabrication capability, the gap size can be varied from 0.1 to 6 ...

Modeling a Novel Shallow Ground Heat Exchanger

M. Bottarelli[1], M. Bortoloni[1]
[1]Università degli Studi di Ferrara, Dipartimento di Architettura, Ferrara, Italia

Ground Heat Exchangers (GHXs) are rarely installed horizontally in linked ground source heat pumps used for space conditioning, because their energetic performance is lower than in the vertical solution. However, the horizontal one holds several advantages: it is easy to carry out and upkeep, it is more compliant with environmental regulations, and interferes marginally with groundwater systems. ...

Post Harvest Cold Chain Optimization of Little Fruits

S. Marai[1], E. Ferrari[1], R. Civelli[1]
[1]DiSAA, University of Milan, Milan, Italy

This paper presents heat transfer 3-D models of a passive refrigeration system used to improve the shelf life and the quality of the perishable fruits. Passive refrigerator system uses the changing phase to keep temperature close to the melting temperature. A multi-step study was performed: a 3-D heat transfer model on the empty box; a 3-D heat transfer model on the box containing a slab with ...

Nondestructive Testing of Composites Using Model Based Design

E. Nesvijski[1]

There is a practical interest among composite materials manufacturers to high-speed accurate non-destructive evaluation (NDE) technology for voids inspection when these voids are natural components of such complex structures like resin insulated layer of double-sided copper-clad laminates. Model based design (MBD) of NDE system is one of principal solutions for voids inspection in such ...

Wind Flow Modeling of Area Surrounding the Case Western Reserve University Wind Turbine

M. Fernandes[1], D. Matthiesen[1]
[1]Case Western Reserve University, Cleveland, OH, USA

The CWRU Turbine is a research turbine located in a urban campus in Cleveland, Ohio. This location may create turbulence, resulting in a possible loss in energy generation. This research attempts to answers the question of whether the wind flow is affected by the buildings or not. The surrounding buildings, which vary in height from 20 to 40 meters, may affect the wind patterns at the hub ...

Mathematical Model for Prediction of Transmission Loss for Clay Brick Walls

J. Ratnieks[1], A. Jakovics[1], J. Klavins[1]
[1]Laboratory for Modeling Technological and Environmental Processes, University of Latvia, Riga, Latvia

A 2D numerical model for determination of sound reduction index is set up in this work. Results are in good agreement in middle and high frequency range when using solid structure approximation. Results are compared with experiment.

Designing Materials for Mechanical Invisibility Cloaks

P. Olsson[1], F. Larsson[1], A. Khlopotin[1], S. Razanica[1]
[1]Chalmers University of Technology, Gothenburg, Sweden

In solid mechanics, there is considerable interest in achieving “invisibility”. The applications in mechanics include protection of structures and parts of structures from potentially harmful transient waves and steady state vibrations. A suggested large scale application is that protection against seismic waves from earthquakes could be achieved by using cloaking to re-route the waves around ...

Nanoscale Structure Design in EM Fields Using COMSOL Multiphysics

J. Yoo[1], H. Soh[2], J. Choi[3], S. Song[4]
[1]Department of Mechanical Engineering, Yonsei University, Korea
[2]Hyundai Motor Co., Korea
[3]Samsung Electronics Co., Ltd., Korea
[4]Mando Co., Korea

Nanoscale structural analysis and design is presented. All the simulations are carried out using a finite element solver and optimization is performed using parameter and topology optimization schemes. It is concluded that COMSOL is effective for analysis and design of nanoscale structure design in electromagnetic field and it may be combined with several optimization methods to improve system ...