Sehen Sie, wie die Multiphysik-Simulation in Forschung und Entwicklung eingesetzt wird.


Ingenieure, Forscher und Wissenschaftler aus allen Branchen nutzen die Multiphysik-Simulation, um innovative Produktdesigns und -prozesse zu erforschen und zu entwickeln. Lassen Sie sich von Fachbeiträgen und Präsentationen inspirieren, die sie auf der COMSOL Conference präsentiert haben. Durchsuchen Sie die untenstehende Auswahl oder verwenden Sie die Schnellsuche, um eine bestimmte Präsentation oder einen bestimmten Filter nach Anwendungsbereichen zu finden.
Sehen Sie sich die COMSOL Conference 2018 Kollektion an

Modeling Non-Linear Plasma-Wave Interaction at the Edge of a Tokamak Plasma

O. Meneghini, S. Shiraiwa, and C. Lau
Massachusetts Institute of Technology
Cambridge, MA

High power Lower-Hybrid RF waves injected at in a Tokamak plasma can strongly modify the edge plasma. This is caused by ponderomotive forces pushing charged particles in an inhomogeneous oscillating electromagnetic field towards weaker field areas. On the Alcator C-Mod Tokamak, edge ... Mehr lesen

Coupling Hydrodynamics and Geophysics with COMSOL Multiphysics: First Approach and Application to Leachate Injection in Municipal Waste Landfills

C. Duquennoi[1], S. Weisse[1], R. Clement[1], and L. Oxarango[2]
[1]Cemagref, HBAN research unit, Antony, France
[2]LTHE, Grenoble, France

The efficiency of bioreactor lanfills depends on a homogeneous distribution of leachate in the waste body. Therefore, optimisation of leachate injection systems is a challenging issue for operators. Most studies have shown that surface Electrical Resistivity Tomography (ERT) can be a ... Mehr lesen

Modeling of Susceptor Assisted Microwave Heating in Domestic Ovens

K. Pitchai[1], S. Birla[2], J. Diamond Raj[3], J. Subbiah[2], and D. Jones[2]
[1]Dept. of Food Science and Technology, University of Nebraska, Lincoln, NE
[2]Dept. of Biological Systems Engineering, University of Nebraska, Lincoln, NE
[3]Indian Institute of Crop Processing Technology, Thanjavur, Tamil Nadu, India

Susceptors are very thin metallic microwave absorbing films used in microwaveable food packaging. They tend to heat up very rapidly during microwave heating and this effect helps to overcome two major issues faced in domestic microwave ovens; 1) Non-uniform heating and 2) lack of ... Mehr lesen

Geometric Optimization of Micromixers

M. Jain[1], A. Rao[1], K. Nandakumar[1]
[1]Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, LA, USA

The performance of a homogeneous T-mixer can be enhanced significantly by the stimulation of secondary/ transverse flows in the microchannel. Various mixing mechanisms are reported for enhancing micromixing performance such as grooves at the channel bottom, heterogeneous charge patterns ... Mehr lesen

Multiphysics Simulation of a Circular-Planar Anode-Supported Solid Oxide Fuel Cell

K. Daneshvar[1], A. Fantino[1], C. Cristiani[1], G. Dotelli[1], R. Pelosato[1], M. Santarelli[2]
[1]Politecnico di Milano, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Milano, Italy
[2]Politecnico di Torino, Dipartimento di Energetica, Torino, Italy

A 2D isothermal axisymmetric model of an anode-supported Solid Oxide Fuel Cell (SOFC) has been developed. Also a parametric analysis to find the effect of important parameters on the cell performance has been done. This simulation has been carried out at 1 atm and 1073 K. The PEN ... Mehr lesen

COMSOL Multiphysics Super Resolution Analysis of a Spherical Geodesic Waveguide Suitable for Manufacturing

H. Ahmadpanahi[1], D. Grabovi?ki?[1], J.C. González[1], P. Benítez[1], J.C. Miñano[1]
[1]Cedint Universidad Politécnica de Madrid, Madrid, Spain

Recently it has been proved theoretically (Miñano et al, 2011) that the super-resolution up to ? /500 can be achieved using an ideal metallic Spherical Geodesic Waveguide (SGW). This SGW is as a theoretical design, in which the conductive walls are considered to be lossless conductors ... Mehr lesen

Contactless Power and Data Transfer for Multiple Nonlinear Loads

H.P. Schmidt [1], U. Vogl[1]
[1]UAS HAW Amberg-Weiden, Amberg, Germany

For the design of an inductive power and data transfer electromagnetic calculation are carried out. A transfer system is considered for loads that are distributed across some distances. For example, such loads are adjustable speed drives that are found in factory automation and intra ... Mehr lesen

Void Shape Evolution of Silicon Simulation in COMSOL Multiphysics®

C. Grau Turuelo[1], B. Bergmann[1], C. Breitkopf[1]
[1]Technische Universität Dresden, Dresden, Germany

The void shape evolution of a trench patterned silicon substrate results in diverse cavities by varying initial conditions. The size and the arrangement of the initial trenches are decisive for the transformation process besides the annealing conditions which are, in fact, time and ... Mehr lesen

Numerical Prediction of Particle Dynamics Within a Cytometer. Application to Counting and Sizing by Impendance Measurement

D. Isèbe[1]
[1]HORIBA Medical, Montpellier, France

This paper describes how to numerically tackle the problem of counting and sizing particles by impedance measurement in an orifice–electrode system. The model simulate the particle dynamics submitted to strong hydrodynamic stresses through a microorifice and compute the voltage pulses ... Mehr lesen

Modeling Charge/Discharge Heat Generation of Li-ion Cells and Experimental Verification of Temperature Distribution

Tatsuya YAMAUE[1]
[1] Kobelco Research Institute, Inc., Kobe, Hyogo, Japan

Modeling the heat generation and the heat transfer of the electrode of lithium-ion battery are introduced. There are several models, such as an homogeneous heating model and a model considering the current and reaction distribution of electrode. Generally, electrodes have large area and ... Mehr lesen