Optimizing the Interference Fit Between 2 Pipes with Structural Analyses

Bridget Paulus February 15, 2018

The interference fit between two parts has to be just right. Think of it as the Goldilocks quandary of structural mechanics: if the fit is too loose, the parts won’t hold together; if it’s too tight, the parts can’t join. For optimal performance of a structure involving joined parts, the interference fit needs to be calculated. One method is to create a simulation app, which can efficiently compute the contact pressure and surface displacement of two joined parts.

Weiterlesen

Bridget Paulus February 7, 2018

Natural convection is a type of heat transport found in engineering applications of all sizes. For instance, this phenomenon helps maintain a reasonable temperature in both small electronic devices and large buildings. No matter the application area, design engineers can use the COMSOL Multiphysics® software to model natural convection in air for both 2D and 3D geometries.

Weiterlesen

Bridget Paulus January 19, 2018

In civil engineering and the biomedical field, strain gauges are used to measure deformation sustained by various objects. Typically, foil gauges are used, but they have low sensitivity. MEMS-based gauges, like the double-ended tuning fork (DETF) strain gauge, offer better performance. To optimize the design of a new DETF strain gauge, researchers used the COMSOL Multiphysics® software and compared the results to an analytical model.

Weiterlesen

Kategorien

Bridget Paulus November 6, 2017

Optimizing fuel for nuclear reactors can increase the amount of power they generate, improve their safety, and lower greenhouse gas emissions. However, studying nuclear fuel can be complex, as it involves interactions between multiple physical phenomena. In his keynote talk from the COMSOL Conference 2017 Boston, Andrew Prudil of Canadian Nuclear Laboratories (CNL) discussed using multiphysics models to gain insight into nuclear fuel. If you missed his presentation, find a video recording and summary below.

Weiterlesen

Bridget Paulus October 20, 2017

Extraordinary optical transmission (EOT) is an important process in terahertz applications. Developing EOT applications could lead to improvements in medical imaging, quality assurance, and more. To study this phenomenon, researchers simulated EOT devices with different array geometries and material properties. The simulation results were compared and validated with measured data. Let’s take a look at their work…

Weiterlesen

Kategorien

Bridget Paulus September 18, 2017

Maintaining an even temperature for buildings in hot climates often requires a lot of energy. One option for improving thermal performance is by including phase change materials (PCMs) in parts of the building. To study the effectiveness of PCMs in regulating temperature, researchers used the COMSOL Multiphysics® software to model a novel plaster that includes a PCM. They then analyzed the thermal performance of the PCM-enhanced plaster and compared the results with a reference plaster.

Weiterlesen

Bridget Paulus August 29, 2017

Nonconducting film (NCF) is an emerging underfill adhesive technology used to assemble electronic components in the microelectronics industry. Optimizing the NCF material and process can be difficult, as they must achieve a fast bonding time, high degree of cure, and correct underfill fillet shape. Achieving a successful bond depends on the interaction between the material’s chemorheology and the bonding process parameters. To understand these interactions, Veryst Engineering simulated the flow and cure on an NCF during the thermocompression bonding process.

Weiterlesen

Kategorien

Bridget Paulus June 8, 2017

Solar-grade silicon is becoming more popular for applications such as communications and photovoltaics. While it’s important to keep up with this growing demand, the current method of producing solar-grade silicon is energy intensive and expensive. To find a more efficient process, researchers at JPM Silicon GmbH explored a novel method using a microwave furnace. By simulating the internal processes, they aim to optimize their microwave furnace design to produce low-cost solar-grade silicon.

Weiterlesen

Bridget Paulus February 6, 2017

If bubbles in a microfluidic device become stuck, it can cause the device to malfunction. Bubble entrapment depends on several factors, including the geometry and flow characteristics of the microchannel, as well as the surface properties of its walls. To study these aspects, Veryst Engineering modeled a bubble in a microchannel using the COMSOL Multiphysics® software. Today, we look at their results, which shed light on the device geometries and contact angles that lead to bubble entrapment.

Weiterlesen

Bridget Paulus January 16, 2017

When a pipe springs a leak, it’s important to find its location with a quick and accurate method. Engineers at Echologics — a Mueller Technologies Company — use a combination of acoustic sensors and simulation applications to pinpoint such leaks. Sebastien Perrier of Echologics discussed the benefits of this approach and gave a live demonstration of an acoustics modeling app during his keynote talk at the COMSOL Conference 2016 Boston. If you missed Sebastien’s presentation, you can watch it below.

Weiterlesen

Bridget Paulus November 29, 2016

Transdermal drug delivery (TDD) patches continuously deliver drugs into the body for a certain amount of time. However, the skin is designed to keep out foreign substances, like drugs. To create a TDD patch that successfully bypasses this barrier, simulation can be used to study drug release and absorption into the skin. To analyze this process, Veryst Engineering created a TDD patch model with the COMSOL Multiphysics® software and compared the results to experimental data.

Weiterlesen


Kategorien


Tags

1 2